Recipes¶
Base Schema
I¶
A common pattern with marshmallow is to define a base Schema
class which has common configuration and behavior for your application’s schemas.
You may want to define a common session object, e.g. a scoped_session
to use for all Schemas
.
# myproject/db.py
import sqlalchemy as sa
from sqlalchemy import orm
Session = orm.scoped_session(orm.sessionmaker())
Session.configure(bind=engine)
# myproject/schemas.py
from marshmallow_sqlalchemy import SQLAlchemySchema
from .db import Session
class BaseSchema(SQLAlchemySchema):
class Meta:
sqla_session = Session
# myproject/users/schemas.py
from ..schemas import BaseSchema
from .models import User
class UserSchema(BaseSchema):
# Inherit BaseSchema's options
class Meta(BaseSchema.Meta):
model = User
Base Schema
II¶
Here is an alternative way to define a BaseSchema class with a common Session
object.
# myproject/schemas.py
from marshmallow_sqlalchemy import SQLAlchemySchemaOpts, SQLAlchemySchema
from .db import Session
class BaseOpts(SQLAlchemySchemaOpts):
def __init__(self, meta, ordered=False):
if not hasattr(meta, "sqla_session"):
meta.sqla_session = Session
super(BaseOpts, self).__init__(meta, ordered=ordered)
class BaseSchema(SQLAlchemySchema):
OPTIONS_CLASS = BaseOpts
This allows you to define class Meta options without having to subclass BaseSchema.Meta
.
# myproject/users/schemas.py
from ..schemas import BaseSchema
from .models import User
class UserSchema(BaseSchema):
class Meta:
model = User
Introspecting generated fields¶
It is often useful to introspect what fields are generated for a SQLAlchemyAutoSchema
.
Generated fields are added to a Schema's
_declared_fields
attribute.
AuthorSchema._declared_fields["books"]
# <fields.RelatedList(default=<marshmallow.missing>, ...>
You can also use marshmallow-sqlalchemy’s conversion functions directly.
from marshmallow_sqlalchemy import property2field
id_prop = Author.__mapper__.attrs.get("id")
property2field(id_prop)
# <fields.Integer(default=<marshmallow.missing>, ...>
Overriding generated fields¶
Any field generated by a SQLAlchemyAutoSchema
can be overridden.
from marshmallow import fields
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema
from marshmallow_sqlalchemy.fields import Nested
class AuthorSchema(SQLAlchemyAutoSchema):
class Meta:
model = Author
# Override books field to use a nested representation rather than pks
books = Nested(BookSchema, many=True, exclude=("author",))
You can use the auto_field
function to generate a marshmallow Field
based on single model property. This is useful for passing additional keyword arguments to the generated field.
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, field_for
class AuthorSchema(SQLAlchemyAutoSchema):
class Meta:
model = Author
# Generate a field, passing in an additional dump_only argument
date_created = auto_field(dump_only=True)
If a field’s external data key differs from the model’s column name, you can pass a column name to auto_field
.
class AuthorSchema(SQLAlchemyAutoSchema):
class Meta:
model = Author
# Exclude date_created because we're aliasing it below
exclude = ("date_created",)
# Generate "created_date" field from "date_created" column
created_date = auto_field("date_created", dump_only=True)
Automatically generating schemas for SQLAlchemy models¶
It can be tedious to implement a large number of schemas if not overriding any of the generated fields as detailed above. SQLAlchemy has a hook that can be used to trigger the creation of the schemas, assigning them to Model.__marshmallow__
.
from marshmallow_sqlalchemy import ModelConversionError, SQLAlchemyAutoSchema
def setup_schema(Base, session):
# Create a function which incorporates the Base and session information
def setup_schema_fn():
for class_ in Base._decl_class_registry.values():
if hasattr(class_, "__tablename__"):
if class_.__name__.endswith("Schema"):
raise ModelConversionError(
"For safety, setup_schema can not be used when a"
"Model class ends with 'Schema'"
)
class Meta(object):
model = class_
sqla_session = session
schema_class_name = "%sSchema" % class_.__name__
schema_class = type(
schema_class_name, (SQLAlchemyAutoSchema,), {"Meta": Meta}
)
setattr(class_, "__marshmallow__", schema_class)
return setup_schema_fn
Usage:
import sqlalchemy as sa
from sqlalchemy.orm import declarative_base, sessionmaker
from sqlalchemy import event
from sqlalchemy.orm import mapper
# Either import or declare setup_schema here
engine = sa.create_engine("sqlite:///:memory:")
Session = sessionmaker(engine)
Base = declarative_base()
class Author(Base):
__tablename__ = "authors"
id = sa.Column(sa.Integer, primary_key=True)
name = sa.Column(sa.String)
def __repr__(self):
return "<Author(name={self.name!r})>".format(self=self)
# Listen for the SQLAlchemy event and run setup_schema.
# Note: This has to be done after Base and session are setup
event.listen(mapper, "after_configured", setup_schema(Base, session))
Base.metadata.create_all(engine)
with Session() as session:
author = Author(name="Chuck Paluhniuk")
session.add(author)
session.commit()
# Model.__marshmallow__ returns the Class not an instance of the schema
# so remember to instantiate it
author_schema = Author.__marshmallow__()
print(author_schema.dump(author))
This is inspired by functionality from ColanderAlchemy.
Smart Nested
field¶
To serialize nested attributes to primary keys unless they are already loaded, you can use this custom field.
from marshmallow_sqlalchemy.fields import Nested
class SmartNested(Nested):
def serialize(self, attr, obj, accessor=None):
if attr not in obj.__dict__:
return {"id": int(getattr(obj, attr + "_id"))}
return super().serialize(attr, obj, accessor)
An example of then using this:
from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field
class BookSchema(SQLAlchemySchema):
id = auto_field()
author = SmartNested(AuthorSchema)
class Meta:
model = Book
sqla_session = Session
book = Book(id=1)
book.author = Author(name="Chuck Paluhniuk")
session.add(book)
session.commit()
book = Book.query.get(1)
print(BookSchema().dump(book)["author"])
# {'id': 1}
book = Book.query.options(joinedload("author")).get(1)
print(BookSchema().dump(book)["author"])
# {'id': 1, 'name': 'Chuck Paluhniuk'}
Transient object creation¶
Sometimes it might be desirable to deserialize instances that are transient (not attached to a session). In these cases you can specify the transient
option in the Meta
class of a SQLAlchemySchema
.
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema
class AuthorSchema(SQLAlchemyAutoSchema):
class Meta:
model = Author
load_instance = True
transient = True
dump_data = {"id": 1, "name": "John Steinbeck"}
print(AuthorSchema().load(dump_data))
# <Author(name='John Steinbeck')>
You may also explicitly specify an override by passing the same argument to load
.
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema
class AuthorSchema(SQLAlchemyAutoSchema):
class Meta:
model = Author
sqla_session = Session
load_instance = True
dump_data = {"id": 1, "name": "John Steinbeck"}
print(AuthorSchema().load(dump_data, transient=True))
# <Author(name='John Steinbeck')>
Note that transience propagates to relationships (i.e. auto-generated schemas for nested items will also be transient).
See also
See State Management to understand session state management.
Controlling instance loading¶
You can override the schema load_instance
flag by passing in a load_instance
argument when creating the schema instance. Use this to switch between loading to a dictionary or to a model instance:
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema
class AuthorSchema(SQLAlchemyAutoSchema):
class Meta:
model = Author
sqla_session = Session
load_instance = True
dump_data = {"id": 1, "name": "John Steinbeck"}
print(AuthorSchema().load(dump_data)) # loading an instance
# <Author(name='John Steinbeck')>
print(AuthorSchema(load_instance=False).load(dump_data)) # loading a dict
# {"id": 1, "name": "John Steinbeck"}